Use of TrueBeam developer mode for imaging QA

نویسندگان

  • Gilmer Valdes
  • Olivier Morin
  • Yanisley Valenciaga
  • Niel Kirby
  • Jean Pouliot
  • Cynthia Chuang
چکیده

The purpose of this study was to automate regular Imaging QA procedures to become more efficient and accurate. Daily and monthly imaging QA for SRS and SBRT protocols were fully automated on a Varian linac. A three-step paradigm where the data are automatically acquired, processed, and analyzed was defined. XML scripts were written and used in developer mode in a TrueBeam linac to automatically acquire data. MATLAB R013B was used to develop an interface that could allow the data to be processed and analyzed. Hardware was developed that allowed the localization of several phantoms simultaneously on the couch. 14 KV CBCTs from the Emma phantom were obtained using a TrueBeam onboard imager as example of data acquisition and analysis. The images were acquired during two months. Artifacts were artificially introduced in the images during the reconstruction process using iTool reconstructor. Support vector machine algorithms to automatically identify each artifact were written using the Machine Learning MATLAB R2011 Toolbox. A daily imaging QA test could be performed by an experienced medical physicist in 14.3 ± 2.4 min. The same test, if automated using our paradigm, could be performed in 4.2 ± 0.7 min. In the same manner, a monthly imaging QA could be performed by a physicist in 70.7 ± 8.0 min and, if fully automated, in 21.8 ± 0.6 min. Additionally, quantitative data analysis could be automatically performed by Machine Learning Algorithms that could remove the subjectivity of data interpretation in the QA process. For instance, support vector machine algorithms could correctly identify beam hardening, rings and scatter artifacts. Traditional metrics, as well as metrics that describe texture, are needed for the classification. Modern linear accelerators are equipped with advanced 2D and 3D imaging capabilities that are used for patient alignment, substantially improving IGRT treatment accuracy. However, this extra complexity exponentially increases the number of QA tests needed. Using the new paradigm described above, not only the bare minimum — but also best practice — QA programs could be implemented with the same manpower.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive EPID-based 3D validation technique for TrueBeam-delivered VMAT plans

Purpose: To develop and validate a pre-treatment EPI dosimetry method on Varian TrueBeam linacs using continuous imaging, with reconstruction in a 3D cylindrical phantom geometry. Methods: Delivery of VMAT plans with continuous imaging is currently possible only in Research Mode on TrueBeam linacs, with images acquired in a proprietary format. An earlier technique was adapted to take advantage ...

متن کامل

Evaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT

Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...

متن کامل

Evaluation of the truebeam machine performance check (MPC) geometric checks for daily IGRT geometric accuracy quality assurance

Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the performance of the MPC geometric tests relevant to OBI/CBCT IGRT geometric accuracy. This included evaluation of the MPC isocenter and couch tests. Evaluation was performed by comparing MPC to QA test...

متن کامل

Evaluation of the Portal Imaging System Performance for an Elekta Precise Linac in Radiotherapy

Introduction: Electronic portal imaging devices (EPIDs) provide two- and three-dimensional planar and volumetric cone beam images to improve the accuracy of radiation treatment delivery. Periodic quality assurance (QA) of EPIDs is essential for dosimetric verification in radiotherapy. In this study, a QA program was implemented to evaluate the function of the EPID to be confident in applying co...

متن کامل

SU-G-TeP2-01: Can EPID Based Measurement Replace Traditional Daily Output QA On Megavoltage Linac?

PURPOSE To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. METHODS Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015